

LubriOne[™]

LubriOne[™] Internally Lubricated Formulations are designed to be self-lubricating materials, offering low coefficient of friction and improved wear-resistance properties. These materials combine the unique benefits of internal lubricants such as PTFE, silicone and molybdenum disulfide with a wide array of base engineering resins. LubriOne materials have been demonstrated to reduce friction, noise, vibration, heat buildup, and improve product durability.

BASE RESIN	PPA	PC	PSU	PES	PPS	CO- POLYMER ACETAL	PEEK	PA
Barrel Temperature	Barrel Temperatures* °F (°C)							
Rear Zone	550–580	520–560	600–640	630–660	550–580	350–370	660–700	440–490
	(288–305)	(271–293)	(316–338)	(332–338)	(288–304)	(177–188)	(349–371)	(227–254)
Center Zone	560-600	530–570	620-670	650-680	560-615	380–390	700–730	470-510
	(293-316)	(277–299)	(327-354)	(343-360)	(293-324)	(193–200)	(371–388)	(243-266)
Front Zone	580-620	550-580	630-680	670–730	590-630	390–430	720–750	490-540
	(304-327)	(288-305)	(332-360)	(354–388)	(310-332)	(200–221)	(382–400)	(254-282)
Nozzle	575-615	550-600	630–680	680-700	600-625	380-415	720–750	520-570
	(302-324)	(288-316)	(332–360)	(360-371)	(316-330)	(193-213)	(382–400)	(271-300)
Melt	575-615	560–600	625–675	650–710	600-625	370-410	670–740	520–570
Temperature	(302-324)	(293–316)	(330–358)	(343–377)	(316-330)	(188-210)	(354–393)	(271–300)
Mold	250–300	175–240	190–300	225–325	250–325	150–225	290–375	150–200
Temperature	(121–150)	(80–116)	(88–150)	(107–164)	(121–164)	(66–107)	(143–190)	(66–93)
Pack & Hold	50%–75%							
Pressure	of Injection Pressure							
Injection Velocity in/s	1.0-3.0							
Back Pressure psi		50						
Screw Speed rpm	50–90							
Drying Parameters °F (°C)	6 hrs @ 175	4 hrs @ 250	4 hrs @ 275	4 hrs @ 300	4 hrs @ 250	2 hrs @ 200	3 hrs @ 300	4 hrs @ 180
	(80)	(121)	(135)	(150)	(121)	(93)	(150)	(82)
Allowable Moisture %	< 0.05	< 0.02	< 0.02	< 0.04	< 0.02	0.15-0.20	< 0.02	0.10-0.20
Cushion in	0.125-0.250							
Screw Compression Ratio	2.5:1–3.5:1	2.0:1–2.5:1	2.5:1–3.5:1	2.5:1–3.5:1	2.5:1–3.5:1	2.5:1–3.5:1	2.5:1–3.5:1	2.5:1-3.5:1
Nozzle	General	General	General	General	General	General	General	Reverse
Type	Purpose	Purpose	Purpose	Purpose	Purpose	Purpose	Purpose	Taper
Clamp Pressure	5–6 Tons/in² of projected area of cavities and runner system							

 $^{^{\}star} \ \text{Barrel temperatures should be elevated for compounds designed for electrical insulative properties}.$

STARTUP & SHUTDOWN	RECOMMENDATIONS	
Purge Compound	HDPE or HIPS	
Recycling	Recycling LubriOne up to 20% is permissible. Testing the application is highly recommended to determine the effect recycling has on the desired physical properties.	

MOLD DESIGN	RECOMMENDATIONS
Gates	 Many different types of gates can be used such as pin, fan, tunnel, tab and edge gates. Gate type should be selected based on location and part geometry. Gate diameters equivalent to 50% of the average wall thickness are recommended. Land lengths of 0.020"-0.035" (0.50mm-0.90mm) are typically recommended.
Runners	 Full-round runners or a modified trapezoid runner are the best designs. Half-round runners are not recommended. Only naturally balanced runner systems ("H" pattern) are recommended. Runner diameters larger than 0.150" (3.8mm) and not exceeding 0.375" (9.5mm) are recommended. Step each 90° bend in the system down in size (from sprue to gate) approximately 1/16" (1.5mm) to reduce pressure drop. Place vents at each 90° intersection and vent to atmosphere. Hot runner molds are acceptable and should be sized by the manufacturer.
Cold Slug Wells	 Place these wells at the base of the sprue to capture the cold material first emerging from the nozzle. Place wells at every 90° bend in the runner system. Well depths approximately 1.5 times the diameter of the runner provide the best results.
Venting	 Place vents at the end of fill and anywhere potential knit/weld lines will occur. All vents need to be vented to atmosphere. For circular parts, full perimeter venting is recommended. Cut vent depths to: - PPA Compounds: 0.0015"-0.0025" depth and 0.250" width - PC Compounds: 0.002"-0.004" depth and 0.250" width - PSU Compounds: 0.003"-0.004" depth and 0.250" width - PES Compounds: 0.003"-0.004" depth and 0.250" width - PPS Compounds: 0.002"-0.003" depth and 0.250" width - Acetal Compounds: 0.0015" minimum depth and 0.250" width - PEEK Compounds: 0.002"-0.004" depth and 0.250" width - Nylon Compounds: 0.002" minimum depth and 0.250" width - Nylon Compounds: 0.002" minimum depth and 0.250" width Increase vent depth to 0.060" (1.5mm) at 0.250" (4.0mm) away from the cavity and vent to atmosphere.
Draft Angle	Maintain a minimum draft angle of 1/2° per side.

TROUBLESHOOTING RECOMMENDATIONS

PROBLEM	CAUSE	SOLUTION	
Incomplete Fill	Melt and/or mold temperature too cold	 Increase nozzle and barrel temperatures Increase mold temperature Increase injection speed Increase pack and hold pressure Increase nozzle tip diameter Check thermocouples and heater bands 	
	Mold design	Enlarge or widen vents and increase number of vents Check that vents are unplugged Check that gates are unplugged Enlarge gates and/or runners Perform short shots to determine fill pattern and verify proper vent location Increase wall thickness to move gas trap to parting line	
	Shot Size	Increase shot sizeIncrease cushion	
Brittleness	Melt temperature too low	 Increase melt temperature Increase injection speed Measure melt temperature with pyrometer 	
	Degraded/Overheated material	Decrease melt temperature Decrease back pressure Use smaller barrel/excessive residence time	
	Gate location and/or size	 Relocate gate to nonstress area Increase gate size to allow higher flow speed and lower molded-in stress 	
Fibers on Surface (Splay)	Melt temperature too low	Increase melt temperatureIncrease mold temperatureIncrease injection speed	
	Insufficient packing	 Increase pack and hold pressure, and time Increase shot size Increase gate size 	
Sink Marks	Part geometry too thick	Reduce wall thickness Reduce rib thickness	
	Melt temperature too hot	Decrease nozzle and barrel temperatures Decrease mold temperature	
	Insufficient material volume	Increase shot size Increase injection rate Increase packing pressure Increase gate size	
Flash	Injection pressure too high	 Decrease injection pressure Increase clamp pressure Decrease injection speed Increase transfer position 	
	Excess material volume	Decrease pack pressure Decrease shot size Decrease injection speed	
	Melt and/or mold temperature too hot	 Decrease nozzle and barrel temperatures Decrease mold temperature Decrease screw speed 	

TROUBLESHOOTING RECOMMENDATIONS

PROBLEM	CAUSE	SOLUTION		
Excessive Shrink	Too much orientation	Increase packing time and pressure Increase hold pressure Decrease melt temperature Decrease mold temperature Decrease injection speed Decrease screw rpm Increase venting Increase cooling time		
Not Enough Shrink	Too little orientation	Decrease packing pressure and time Decrease hold pressure Increase melt temperature Increase mold temperature Increase injection speed Increase screw rpm Decrease cooling time		
Burning	Melt and/or mold temperature too hot	 Decrease nozzle and barrel temperatures Decrease mold temperature Decrease injection speed 		
	Mold design	Clean, widen and increase number of vents Increase gate size or number of gates		
	Moisture	Verify material is dried at proper conditions		
Nozzle Drool	Nozzle temperature too hot	Decrease nozzle temperature Decrease back pressure Increase screw decompression Verify material has been dried at proper conditions		
Weld Lines	Melt front temperatures too low	 Increase pack and hold pressure Increase melt temperature Increase vent width and locations Increase injection speed Increase mold temperature 		
	Mold design	Decrease injection speed Increase gate size Perform short shots to determine fill pattern and verify proper vent location Add vents and/or false ejector pin Move gate location		
Warp	Excessive orientation	Increase cooling time Increase melt temperature Decrease injection pressure and injection speed		
	Mold design	Increase number of gates		
Sticking in Mold	Cavities are overpacked	Decrease injection speed and pressure Decrease pack and hold pressure Decrease nozzle and barrel temperatures Decrease mold temperature Increase cooling time		
	Mold design	Increase draft angle		
	Part is too hot	Decrease nozzle and barrel temperatures Decrease mold temperature Increase cooling time		

1.844.4AVIENT www.avient.com

Copyright © 2020, Avient Corporation. Avient makes no representations, guarantees, or warranties of any kind with respect to the information contained in this document about its accuracy, suitability for particular applications, or the results obtained or obtainable using the information. Some of the information arises from laboratory work with small-scale equipment which may not provide a reliable indication of performance or properties obtained or obtainable on larger-scale equipment. Values reported as "typical" or stated without a range do not state minimum or maximum properties; consult your sales representative for property ranges and min/max specifications. Processing conditions can cause material properties to shift from the values stated in the information. Avient makes no warranties or guarantees respecting suitability of either Avient's products or the information for your process or end-use application. You have the responsibility to conduct full-scale end-product performance testing to determine suitability in your application, and you assume all risk and liability arising from your use of the information and/or use or handling of any product. AVIENT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, either with respect to the information or products reflected by the information. This literature shall NOT operate as permission, recommendation, or inducement to practice any patented invention without permission of the patent owner.